7,307 research outputs found

    Final-state read-out of exciton qubits by observing resonantly excited photoluminescence in quantum dots

    Full text link
    We report on a new approach to detect excitonic qubits in semiconductor quantum dots by observing spontaneous emissions from the relevant qubit level. The ground state of excitons is resonantly excited by picosecond optical pulses. Emissions from the same state are temporally resolved with picosecond time resolution. To capture weak emissions, we greatly suppress the elastic scattering of excitation beams, by applying obliquely incident geometry to the micro photoluminescence set-up. Rabi oscillations of the ground-state excitons appear to be involved in the dependence of emission intensity on excitation amplitude.Comment: 4 pages, 4 figures, to appear in Appl. Phys. Let

    Surface Shubnikov-de Hass oscillations and non-zero Berry phases of the topological hole conduction in Tl1x_{1-x}Bi1+x_{1+x}Se2_2

    Get PDF
    We report the observation of two-dimensional Shubnikov-de Hass (SdH) oscillations in the topological insulator Tl1x_{1-x}Bi1+x_{1+x}Se2_2. Hall effect measurements exhibited electron-hole inversion in samples with bulk insulating properties. The SdH oscillations accompanying the hole conduction yielded a large surface carrier density of ns=5.1×1012n_{\rm{s}}=5.1 \times10^{12}/cm2^2, with the Landau-level fan diagram exhibiting the π\pi Berry phase. These results showed the electron-hole reversibility around the in-gap Dirac point and the hole conduction on the surface Dirac cone without involving the bulk metallic conduction.Comment: 5 pages, 4 figure

    Parametric instabilities in the LCGT arm cavity

    Full text link
    We evaluated the parametric instabilities of LCGT (Japanese interferometric gravitational wave detector project) arm cavity. The number of unstable modes of LCGT is 10-times smaller than that of Advanced LIGO (U.S.A.). Since the strength of the instabilities of LCGT depends on the mirror curvature more weakly than that of Advanced LIGO, the requirement of the mirror curvature accuracy is easier to be achieved. The difference in the parametric instabilities between LCGT and Advanced LIGO is because of the thermal noise reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica mirrors with larger laser beams), which are the main strategies of the projects. Elastic Q reduction by the barrel surface (0.2 mm thickness Ta2_2O5_5) coating is effective to suppress instabilities in the LCGT arm cavity. Therefore, the cryogenic interferometer is a smart solution for the parametric instabilities in addition to thermal noise and thermal lensing.Comment: 6 pages,3 figures. Amaldi7 proceedings, J. Phys.: Conf. Ser. (accepted

    Spin melting and refreezing driven by uniaxial compression on a dipolar hexagonal plate

    Full text link
    We investigate freezing characteristics of a finite dipolar hexagonal plate by the Monte Carlo simulation. The hexagonal plate is cut out from a piled triangular lattice of three layers with FCC-like (ABCABC) stacking structure. In the present study an annealing simulation is performed for the dipolar plate uniaxially compressed in the direction of layer-piling. We find spin melting and refreezing driven by the uniaxial compression. Each of the melting and refreezing corresponds one-to-one with a change of the ground states induced by compression. The freezing temperatures of the ground-state orders differ significantly from each other, which gives rise to the spin melting and refreezing of the present interest. We argue that these phenomena are originated by a finite size effect combined with peculiar anisotropic nature of the dipole-dipole interaction.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference. To appear in a special issue of J. Phys. Condens. Matte

    Gravitational waveforms for spinning compact binaries

    Full text link
    The rotation of the bodies and the eccentricity of the orbit have significant effects on the emitted gravitational radiation of binary systems. This work focuses on the evaluation of the gravitational wave polarization states for spinning compact binaries. We consider binaries on eccentric orbits and the spin-orbit interaction up to the 1.5 post-Newtonian order in a way which is independent of the parameterization of the orbit. The equations of motion for angular variables are included. The formal expressions of the polarization states are given with the inclusion of higher order corrections to the waveform

    Precise determination of two-carrier transport properties in the topological insulator TlBiSe2_2

    Get PDF
    We report the electric transport study of the three-dimensional topological insulator TlBiSe2_2. We applied a newly developed analysis procedure and precisely determined two-carrier transport properties. Magnetotransport properties revealed a multicarrier conduction of high- and low-mobility electrons in the bulk, which was in qualitative agreement with angle-resolved photoemission results~[K. Kuroda et al.et~al., Phys. Rev. Lett. 105\bm{105}, 146801 (2010)]. The temperature dependence of the Hall mobility was explained well with the conventional Bloch-Gr{\"u}neisen formula and yielded the Debye temperature ΘD=113±14\varTheta_{\rm{D}}=113 \pm 14~K. The results indicate that the scattering of bulk electrons is dominated by acoustic phonons.Comment: 6 pages, 5 figures, to be published in Physical Review

    Nucleosynthesis in 2D Core-Collapse Supernovae of 11.2 and 17.0 M_{\odot} Progenitors: Implications for Mo and Ru Production

    Full text link
    Core-collapse supernovae are the first polluters of heavy elements in the galactic history. As such, it is important to study the nuclear compositions of their ejecta, and understand their dependence on the progenitor structure (e.g., mass, compactness, metallicity). Here, we present a detailed nucleosynthesis study based on two long-term, two-dimensional core-collapse supernova simulations of a 11.2 M_{\odot} and a 17.0 M_{\odot} star. We find that in both models nuclei well beyond the iron group (up to Z44Z \approx 44) can be produced, and discuss in detail also the nucleosynthesis of the p-nuclei 92,94^{92,94}Mo and 96,98^{96,98}Ru. While we observe the production of 92^{92}Mo and 94^{94}Mo in slightly neutron-rich conditions in both simulations, 96,98^{96,98}Ru can only be produced efficiently via the ν\nup-process. Furthermore, the production of Ru in the ν\nup-process heavily depends on the presence of very proton-rich material in the ejecta. This disentanglement of production mechanisms has interesting consequences when comparing to the abundance ratios between these isotopes in the solar system and in presolar grains.Comment: 48 pages, 19 figures, accepted for publication in: J. Phys. G: Nucl. Part. Phy
    corecore